Modeling Climate Change Impacts on Farm Households in Zambia

Ayala Wineman and Eric Crawford
Michigan State University

Brian Mulenga
Indaba Agricultural Policy Research Institute

Presentation at Chrismar Hotel, Lusaka, Zambia
Afternoon April 10, 2014
Objectives

• To estimate how representative farm households in Zambia will respond to effects of climate change on crop yields

• To identify the extent to which farmers can minimize the negative effects of climate change by changing crops or production technologies
How the model works

• Choose the set of crops and production technologies that best meets the household’s objectives (profit, food consumption needs)

• Taking into account:
 • Crop yields
 • Inputs required for each production activity
 • Prices of crop outputs and inputs
 • Availability of land, labor, cash
 • Household calorie consumption needs
 • Desire to maintain soil fertility
Household types

Smallholder
- ~1.75 hectares
- ~2.75 working-age members
- 350-500 ZMK available

Emergent farmer
- ~7 hectares
- ~3.25 working-age members
- 150,000-200,000 ZMK available

Female-headed household
- ~1.5 hectares
- ~2 working-age members
- 350-500 ZMK available

We assumed households need 2,100 calories from field crops per day per adult equivalent.
Crops and technologies used

Based on data from Crop Forecast Survey

<table>
<thead>
<tr>
<th>Crop</th>
<th>Seed Type</th>
<th>Tillage Method</th>
<th>Fertilizer</th>
<th>Management</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Local</td>
<td>Hand</td>
<td>No</td>
<td>High</td>
<td>MZ1</td>
</tr>
<tr>
<td>Maize</td>
<td>Hybrid</td>
<td>Hand</td>
<td>Yes</td>
<td>Low</td>
<td>MZ4</td>
</tr>
<tr>
<td>Maize</td>
<td>Local</td>
<td>Hand</td>
<td>Yes</td>
<td>High</td>
<td>MZ9</td>
</tr>
<tr>
<td>Maize</td>
<td>Local</td>
<td>Ox</td>
<td>No</td>
<td>Low</td>
<td>MZ6</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>Local</td>
<td>Hand</td>
<td>No</td>
<td>High</td>
<td>GR1</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>Local</td>
<td>Hand</td>
<td>No</td>
<td>Low</td>
<td>GR2</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>Improved</td>
<td>Hand</td>
<td>No</td>
<td>Low</td>
<td>GR12</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>Local</td>
<td>Ox</td>
<td>No</td>
<td>Low</td>
<td>GR6</td>
</tr>
</tbody>
</table>
Climate change scenarios

• The Hadley (HadCM3) model (relatively “dry”)
 – Declines in rainfall
 – Somewhat more variable rainfall
 – Increases in temperature

• The CCSM model (relatively “wet”)
 – Increases in rainfall
 – Increases in temperature similar to Hadley model
Future yield predictions for Southern Province based on statistical yield analysis
Future yield predictions for Southern Province based on statistical yield analysis

![Graph showing proportion change in expected yield for different crops and models.](image)

- Hybrid maize with fertilizer
- Sunflower
- Hybrid maize without fertilizer
- Cotton

Legend:
- Blue bars: Hadley
- Red bars: CCSM
Results
Smallholder in Southern Province

CCSM outcome: 4,155 kcal/AE/day
Hadley outcome: 3,849 kcal/AE/day
Baseline outcome: 4,431 kcal/AE/day
Results
Emergent farmer in Southern Province

CCSM outcome: 10,965 kcal/AE/day
Hadley outcome: 10,440 kcal/AE/day
Baseline outcome: 11,549 kcal/AE/day
Smallholder results with and without adaptation

Hadley – with adaptation: 3,849 kcal/AE/day = -13.15%
Hadley – no adaptation: 3,656 kcal/AE/day = -17.49%
Baseline outcome: 4,431 kcal/AE/day
Emergent farmer results with and without adaptation

Hadley – with adaptation: 10,440 kcal/AE/day = -9.60%
Hadley – no adaptation: 10,135 kcal/AE/day = -12.25%
Baseline outcome: 11,549 kcal/AE/day
Main findings and conclusions

- Climate change will generally reduce crop yields.
- In response, model results to date show that farmers will choose different crops (cotton, cassava) and technologies (lower fertilizer).
- This reduces the negative effects of climate change . . . but not by much.
- Of the three household types modeled, smallholder farmers are most vulnerable to obtaining low production outcomes in a bad year.
- Larger-scale adaptation measures are needed (e.g. heat-tolerant seed varieties, agricultural investments & policies to reduce risk for small farmers).

Questions?
Slides for reference
Mathematical structure of model

\[
\text{max calories} = \sum_{j=1}^{n} K_j X_j
\]

subject to:

- Input requirements for each crop activity
- Resource constraints: \(\sum_{j=1}^{m} a_{ij} X_j \leq b_i \) → For land and biweekly labor
- Budget constraint: \(\sum_{j=1}^{n} C_{ij} X_j \leq \omega \)
- Household calorie requirement: \(K_j X_j \geq \theta \)
- Non-negativity constraint: \(X_j \geq 0 \)
- Flexibility constraints (sometimes): \(K_j X_j \geq \varphi \)
Model validation

How well do model results reflect observed farmer practices?

- 42.42% of land diverted from observed crop patterns
- 9.43% diverted
42.42% of land diverted from observed crop patterns

9.43% diverted

9.01% diverted

9.37% diverted
With/without a fertilizer subsidy

<table>
<thead>
<tr>
<th>Site</th>
<th>Basal</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>1,997</td>
<td>2,064</td>
</tr>
<tr>
<td></td>
<td>3,452</td>
<td>3,549</td>
</tr>
<tr>
<td>Site 2</td>
<td>2,775</td>
<td>2,919</td>
</tr>
<tr>
<td></td>
<td>3,523</td>
<td>3,572</td>
</tr>
<tr>
<td>Site 3</td>
<td>2,193</td>
<td>2,193</td>
</tr>
<tr>
<td></td>
<td>3,847</td>
<td>3,700</td>
</tr>
</tbody>
</table>

Median fertilizer cost (per kg), including transport

- **Site 1 - Baseline - Smallholder**
 - (Maximizing total calories with 500,000 ZMK budget)

- **Without subsidy**
 - Hectares cultivated

- **With fertilizer subsidy**
 - Hectares cultivated

4,652 kcal/AE/day

4,770 kcal/AE/day
Results

Female-headed household in Southern Province

CCSM outcome: 5,379 kcal/AE/day
Hadley outcome: 5,072 kcal/AE/day
Baseline outcome: 5,714 kcal/AE/day