Measuring the Impact of Fertilizer Use in Burkina Faso

by Hamza Haider 8/2/2016

Motivation

- Cereal yields significantly lower than other countries
- Rain-fed agriculture
- Low use of modern inputs
- Why is fertilizer use so low?

Research Question

What is the impact of fertilizer use on crop yields and household food security?

Data

- Continuous Farm Household Survey (*Enquête Permanente Agricole*)
 - Nationally representative (45 provinces, 826 villages)
 - 2009/10-2011/12
 - 2700 households growing cereals
 - Agricultural output, inputs, food security, food groups consumed, livestock, income

Sample Villages

Identification

- Fertilizer use not randomly assigned, cannot regress outcome variable on fertilizer
- Use matching techniques with DID to control for observable & time invariant differences among fertilizer users and non-users

Empirical Analysis

- Fertilizer includes urea and NPK
- Unit of analysis: plot manager
- Analyze impact on maize crop only for comparability, maize widely grown with variation in fertilizer use

Matching

- In sample, some people use fertilizer
- Try to find 'similar' people that didn't use fertilizer
- Match on pre-treatment observed characteristics that predict fertilizer use
- Use largest set of covariates that allow for large region of common support & pass balance tests
- Add continuous variables to increase variability in PPS

DID

- Compare change in outcome of fertilizer users with change in outcome of those not using fertilizer
- **DID estimator**: $\hat{\delta} = (\bar{y}_{fert,1} \bar{y}_{fert,0}) (\bar{y}_{nofert,1} \bar{y}_{nofert,0})$
- Allows farmers using fertilizer and not to be different, but requires their difference to be constant over time

DID-matching

- Dependent variable is change in outcome variable
- To test impact in year 2011, keep all untreated 2010 observations. Treated group has treatment = 1 in 2011 while comparison doesn't
- Keep largest plot per person each year
- On average 1.56 plots per person per year
- With panel data, no obvious reason to use only matching techniques and not use DID with matching

Summary Stats

Maize Yield (kg/ha)							
2010 2011 2012							
Fertilizer	1582	1443	1401				
No							
Fertilizer	1158	1046	983				

Number of Maize Plots							
2010 2011 2012							
Fertilizer	1330	1272	1439				
No							
Fertilizer	2343	1899	1723				

Matching Variables

- Characteristics:
 - Plot manager
 - HH
 - Plot
 - Geographic

Outcome Variables

- Maize yield
- Food Consumption Score (0-112 based on food groups consumed in last week, WFP)

Results 2011

	psmatch (1)	psmatch(5)	nnmatch (1)	nnmatch (5)	ipw
∆Yield	327.5*	297.7*	418.7***	327.3***	369.5***
	(172.9)	(152.7)	(98.1)	(84.5)	(105.6)
∆FCS	6.39*	6.49*	1.57	3.31*	0.705
	(3.41)	(3.92)	(2.23)	(1.95)	(2.65)
Mean Fert Use (N kg/ha)	16.94	16.94	17.61	17.61	16.78

Results 2012

	psmatch (1)	psmatch(5)	nnmatch (1)	nnmatch (5)	ipw
∆Yield	7.30	52.57	-69.31	68.79	-44.18
	(142.6)	(129.1)	(208.6)	(165.4)	(242.0)
∆FCS	-4.19	-1.90	-0.635	0.300	-1.99
	(4.15)	(3.49)	(3.02)	(2.55)	(3.43)
Mean Fert Use (N kg/ha)	12.26	12.26	14.89	14.89	12.81

Weighted Regressions

	Full Sample	Restricted Sample	Full Sample	Restricted Sample	
	Maiz	e Yield 2011	Maize Yield 2012		
Contilizon Lloo	347.3***	326.4***	-14.1	57.3	
Fertilizer Üse	(66.6)	(78.3)	(77.3)	(76.9)	
	FCS 2011		FCS 2012		
	5.68***	0.647	-3.72*	2.61	
Fertilizer Use	(1.66)	(1.89)	(1.96)	(1.94)	
Mean Fert Use					
(N kg/ha)	17.61	13.37	14.9	12.7	
Other central variables are use of improved seed, herbicide, fungicide, posticide, manure and SM/C structures					

ierbiciue, iuligiciue, pesticiue,

Discussion (1)

- Large impact on yields in 2010/11 (~25% increase, ~20 kg increase yield / N kg)
- Similar effect as seen in literature
- No impact in 2011/12, which was a drought year
- FCS improves when yield increases

Discussion (2)

- No effect of organic fertilizer on short term yields
- Includes manure, compost pit, household refuse, animal penning, indirect penning and other sources – mostly low in nitrogen content
- Anecdotal evidence insufficient labor allocated to manure application
- Other benefits of organic fertilizer: improves soil structure and ability of soil to retain water and nutrients

Conclusion

- No yield response in drought years may deter adoption
- Need complementary investments in irrigation, climate information systems
- Policies that affect fertilizer should be based on studies measuring impact over a number of years rather than single year, also consider variation in yield response

Questions/Comments?

MICHIGAN STATE

PSM-Steps

- 1) Probit/logistic regression with fertilizer use as dependent variable. Use rich set of observed covariates as explanatory variables
- 2) Obtain predicted propensity score (PPS)
- 3) Define region of common support (where PPS overlaps for treatment & comparison group)
- 4) Choose matching estimator
- 5) Calculate ATT & standard errors

Nearest Neighbor Matching

- Nearest neighbor matching: define 'close' by weighting difference between covariates by inverse of sample covariance matrix
- Benefit is dropping functional form assumption (probit/logit)
- Use bias adjustment for consistency when matching on two or more continuous covariates (Abadie & Imbens 2006, 2011)

Inverse Probability Weighting

- IPW: Compare with everyone, weights account for 'similarity'
- Estimation unreliable when large number of observations have very low/high PPS since their importance in weighted regression approaches infinite/zero
- Re-estimate after dropping observations with PPS<0.1 & PPS>0.9

Other 'Matching' Techniques

 Weighted regression: Control for other inputs changing. Weights are 1/PPS & 1/(1-PPS) for treatment & comparison group respectively

Assumptions

PSM:

- 1) Conditional mean independence matching on observables creates appropriate comparison group
- 2) Common support

DID:

1) Parallel trend between treatment & comparison groups

Common Support (2011)

Common Support (2012)

Balance Test 2011 (1)

	Unmatched	M	ean	t-1	test
Variable	Matched	Treated	Control	t	p> t
Household head	U	0.98	0.98	-0.31	0.759
	Μ	0.98	0.99	-0.58	0.563
Age	U	48.42	50.96	-1.49	0.138
	Μ	48.42	44.40	2.15	0.033
Primary educated	U	0.17	0.08	2.5	0.013
	Μ	0.17	0.35	-2.95	0.004
Female	U	0.05	0.05	-0.02	0.985
	Μ	0.05	0.04	0.34	0.735
Collectively managed	U	0.91	0.95	-1.32	0.189
	Μ	0.91	0.96	-1.43	0.153
Far from home	U	0.36	0.22	2.66	0.008
	Μ	0.36	0.28	1.21	0.227
Lowland	U	0.06	0.05	0.54	0.589
	Μ	0.06	0.01	1.93	0.055
Slope	U	0.06	0.07	-0.19	0.851
	Μ	0.06	0.08	-0.55	0.582
Tenure own	U	0.68	0.70	-0.39	0.698
	Μ	0.68	0.63	0.74	0.46

Balance Test 2011 (2)

	Unmatched	м	ean	t -1	test
Variable	Matched	Treated	Control	t	p> t
HH size	U	11.3	9.11	2.8	0.005
	Μ	11.3	9.37	2.01	0.046
HH farming area (ha)	U	3.74	2.48	3.43	0.001
	Μ	3.74	3.14	1.2	0.23
HH livestock (TLU)	U	10.09	8.16	0.67	0.506
	Μ	10.09	6.21	1.22	0.225
HH head female	U	0.03	0.04	-0.24	0.809
	M	0.03	0.03	0	1
HH head age	U	48.01	50.53	-1.44	0.152
	Μ	48.01	44.42	1.87	0.063
HH head education	U	0.25	0.17	1.72	0.087
	M	0.25	0.42	-2.58	0.011
No of plots	U	5.34	5.39	-0.14	0.89
	M	5.34	4.50	2.4	0.017
In value of ag assets	U	9.34	8.92	1.98	0.049
	M	9.34	9.04	1.17	0.242
Extension	U	4.8	4.86	-0.71	0.478
	M	4.8	4.88	-0.83	0.409
HH area corn	U	1.03	0.59	2.73	0.007
	Μ	1.03	0.95	0.33	0.742

Balance Test 2012 (1)

	Unmatched	M	ean	t-test	
Variable	Matched	Treated	Control	t	p> t
Household head	U	0.96	0.96	-0.12	0.901
	Μ	0.96	1.00	-2.03	0.043
Age	U	49.88	53.61	-2.08	0.039
	Μ	49.88	50.95	-0.52	0.601
Primary educated	U	0.08	0.10	-0.64	0.526
	Μ	0.08	0.12	-0.99	0.324
Female	U	0.03	0.03	-0.04	0.971
	Μ	0.03	0.00	1.75	0.082
Collectively managed	U	0.94	0.87	1.53	0.126
	Μ	0.94	0.88	1.27	0.205
Far from home	U	0.28	0.17	2.14	0.033
	Μ	0.28	0.24	0.67	0.505
Lowland	U	0.05	0.07	-0.39	0.695
	Μ	0.05	0.04	0.34	0.734
Slope	U	0.05	0.09	-1.10	0.272
	Μ	0.05	0.01	1.66	0.098
Tenure own	U	0.66	0.68	-0.42	0.673
	Μ	0.66	0.71	-0.78	0.434

Balance Test 2012 (2)

	Unmatched	М	ean	t-	test
Variable	Matched	Treated	Control	t	p> t
HH size	U	9.72	9.25	0.71	0.476
	Μ	9.72	10.71	-1.28	0.201
HH farming area (ha)	U	2.32	2.26	0.29	0.772
	Μ	2.32	2.76	-1.59	0.113
HH livestock (TLU)	U	4.61	6.34	-1.42	0.158
	Μ	4.61	5.42	-0.95	0.345
HH head female	U	0.02	0.02	0.09	0.93
	Μ	0.02	0.00	1.42	0.157
HH head age	U	49.66	53.87	-2.29	0.023
	Μ	49.66	50.95	-0.61	0.545
HH head education	U	0.17	0.15	0.41	0.685
	Μ	0.17	0.23	-0.92	0.361
No of plots	U	4.95	5.21	-0.70	0.486
	Μ	4.95	5.44	-1.28	0.204
In value of ag assets	U	9.09	8.91	0.85	0.394
	Μ	9.09	9.62	-2.06	0.041
Extension	U	4.81	4.85	-0.45	0.652
	Μ	4.81	4.76	0.38	0.704
HH area corn	U	0.61	0.60	0.06	0.956

FCS Chart

	FOOD ITEMS (examples)	Food groups (definitive)	Weight (definitive)
1	Maize , maize porridge, rice, sorghum, millet pasta, bread and other cereals	Main staples	2
	Cassava, potatoes and sweet potatoes, other tubers, plantains		
2	Beans. Peas, groundnuts and cashew nuts	Pulses	3
3	Vegetables, leaves	Vegetables	1
4	Fruits	Fruit	1
5	Beet, goat, poultry, pork, eggs and tish	Meat and fish	4
6	Milk yogurt and other diary	Milk	4
7	Sugar and sugar products, honey	Sugar	0.5
8	Oils, fats and butter	Oil	0.5
9	spices, tea, cottee, salt, tish power, small amounts of milk for tea.	Condiments	0