Effects of Human Population Density on Smallholder Agriculture in Kenya

Milu Muyanga & TS Jayne

Agricultural, Food and Resource Economics Department
Michigan State University

Presentation at the International Center for Tropical Agriculture (CIAT) -Kenya
Nairobi, December 3rd, 2013
Poverty and hunger

- Reducing poverty and hunger have been a critical policy concern in most of the sub-Saharan African countries for the past half-century
- Yet, despite series of governments and development agencies interventions, poverty still remains pervasive
- More than 40% of sub-Saharan Africa’s population is estimated to be below the poverty line
- Majority of the hungry and poor are the rural households who are smallholder farmers
Hunger and poverty reduction strategy

- Based on the region’s land resource endowment, an agricultural-led growth strategy has been touted as the best way for rapid and sustained reductions in food insecurity and poverty.
 - Fischer and Shah (2010) report that sub-Saharan Africa has about 202/446 million hectares of uncultivated arable land in the world.
 - The region is also reported to possess an enormous yield gap in staple grains (Fischer et al., 2009; Deininger and Byerlee, 2011).
 - Renewed interest in the “unutilized” land – “land grabs” – following food and fuel prices volatility and adverse climatic conditions.
Household landholding vs. income

Source: Jayne et al., 2003
Land abundance hypothesis
-- what do we know?--

• Newspaper headlines and household level survey data show a different picture:
 • Newspaper headlines show rising land conflicts
 • Population densities in many areas of rural Africa are much higher than they were two decades ago:
 • High populations growth rates (2.5%/year) and low urbanization rates
 • Led to declining trends in farm size and fallow rates
 • More than half of smallholder farms are less than 1.5 hectares
 • Even in countries with low population densities, there are inequalities in land access:
 • Persistently concentrated rural settlements
 • 1% of SSA’s rural areas contain 16% of its rural people
 • 20% of SSA’s rural areas contain 76% of its rural people
Land abundance hypothesis
-- what do we know?--

- Newspaper headlines and household level survey data show a different picture:
 - Newspaper headlines show rising land conflicts
 - Population densities in many areas of rural Africa are much higher than they were two decades ago:
 - High populations growth rates (2.5%/year) and low urbanization rates
 - Led to declining trends in farm size and fallow rates
 - More than half of smallholder farms are less than 1.5 hectares
 - Even in countries with low population densities, there are inequalities in land access:
 - Persistently concentrated rural settlements
 - 1% of SSA’s rural areas contain 16% of its rural people
 - 20% of SSA’s rural areas contain 76% of its rural people
Newspaper headlines show increased land conflicts
Newspaper headlines show increased land conflicts

- Causes of the wave of violence that engulfed Kenya after the presidential election in December 2007
 - Local analysts point to historical land inequalities the main cause
Land abundance hypothesis
-- what do we know?--

• Population densities in many areas of rural Africa are much higher than they were two decades ago:
 • High populations growth rates and low urbanization rates

Rural population growth
1960-2010

Source: World Development Indicators, World Bank
Land abundance hypothesis
-- what do we know?--

- Population densities in many areas of rural Africa are much higher than they were two decades ago:
 - High populations growth rates (2.5%/year) and low urbanization rates
 - Led to declining trends in farm size and fallow rates

![Graph showing arable land per capita from 1960 to 2010](image)
Land abundance hypothesis
-- what do we know?--

- Population densities in many areas of rural Africa are much higher than they were two decades ago:
 - High populations growth rates (2.5%/year) and low urbanization rates
 - Led to declining trends in farm size and fallow rates
 - More than half of smallholder farms are less than 1.5 hectares

Hectares of arable land per person in agriculture (10 year average)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>0.501</td>
<td>0.444</td>
<td>0.333</td>
<td>0.224</td>
<td>0.218</td>
<td>43.5%</td>
</tr>
<tr>
<td>Zambia</td>
<td>0.643</td>
<td>0.607</td>
<td>0.398</td>
<td>0.342</td>
<td>0.297</td>
<td>46.2%</td>
</tr>
<tr>
<td>Kenya</td>
<td>0.462</td>
<td>0.364</td>
<td>0.305</td>
<td>0.264</td>
<td>0.219</td>
<td>47.4%</td>
</tr>
<tr>
<td>Uganda</td>
<td>0.655</td>
<td>0.569</td>
<td>0.509</td>
<td>0.416</td>
<td>0.349</td>
<td>53.3%</td>
</tr>
<tr>
<td>Malawi</td>
<td>0.480</td>
<td>0.466</td>
<td>0.357</td>
<td>0.304</td>
<td>0.307</td>
<td>64.0%</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>0.613</td>
<td>0.550</td>
<td>0.452</td>
<td>0.420</td>
<td>0.469</td>
<td>76.5%</td>
</tr>
<tr>
<td>Rwanda</td>
<td>0.212</td>
<td>0.213</td>
<td>0.195</td>
<td>0.186</td>
<td>0.174</td>
<td>82.1%</td>
</tr>
<tr>
<td>Mozambique</td>
<td>0.356</td>
<td>0.337</td>
<td>0.320</td>
<td>0.314</td>
<td>0.294</td>
<td>82.6%</td>
</tr>
<tr>
<td>Ghana</td>
<td>0.646</td>
<td>0.559</td>
<td>0.508</td>
<td>0.492</td>
<td>0.565</td>
<td>87.5%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.982</td>
<td>0.860</td>
<td>0.756</td>
<td>0.769</td>
<td>0.898</td>
<td>91.4%</td>
</tr>
</tbody>
</table>
Land abundance hypothesis
-- what do we know?--

• Newspaper headlines and household level survey data show a different picture:
 • Newspaper headlines show rising land conflicts
 • Population densities in many areas of rural Africa are much higher than they were two decades ago:
 • High populations growth rates and low urbanization rates
 • Led to declining trends in farm size and fallow rates
 • Even in countries with low population densities, there are inequalities in land access:
 • Persistently concentrated rural settlements
 • 1% of SSA’s rural areas contain 16% of its rural people
 • 20% of SSA’s rural areas contain 76% of its rural people
 • All arable land is either fully allocated
Figure 3: Population density in Kenya

![Population density in Kenya](image-url)
Diminishing land sizes
--smallholder intensification--

• So, what do diminishing landholding sizes mean for a feasible poverty reduction strategy in sub-Saharan Africa?
 • In the middle of increased smallholder inaccessibility to land?
 • Limited off-farm opportunities and migration?
• The **Asian green revolution** was a small farm phenomenon (Johnston and Kilby, 1975; Mellor, 1976)
 • Over 80 percent of farms in India, Bangladesh, Indonesia, China, Japan and Viet Nam are less than two hectares
 • Is there a potential for similar forms of inclusive smallholder-led agricultural growth in SSA?
Boserup (1965): Land use intensity responds to population density

- Value output per hectare cultivated
- Potential forms of intensification:
 - Modern inputs use
 - Fertilizers
 - High yielding seeds and quick maturing crops
 - Soil quality improvements
 - Terracing, mulching, etc.
 - Irrigation – water availability allowing
 - Improved crop choices – shift to higher value crops
 - Reduced fallow / continuous cultivation
Study objectives and approach

- Effects of increasing population density on smallholder agricultural intensification in Kenya
- Conceptual framework—utility maximization problem
 - Household problem is to maximize its utility
 - Derive factor inputs and output supply functions
 - Estimate the impact of rising population densities on these variables
Effects of population density on smallholder-intensification - analytical framework

- **Observed**
 - Population density
 - Land prices
 - Non-market institutions
 - Landholding
 - Expected output prices
 - Input prices
 - Information flow, institution development, transaction costs
 - Input demand
 - Output supply
 - Income

- **Unobserved**
 - DIRECT EFFECTS
 - INDIRECT EFFECTS
Data and econometric issues

- **Diversified production systems:**
 - Aggregate outputs in some manner – use value per unit of land
- **Unobservable output price:**
 - Output price observed after production decisions are undertaken
 - Expected maize prices model
 - *Dependent variable:* maize price received per kg by household
 - *Explanatory variables:* maize price in regional market; distances to regional markets, lagged NCPB prices, transportation and storage facilities, distances to motorable roads, and buyer types, etc.
- **Population density variable is potentially endogenous:**
 - *Control function* estimation approach
 - Instruments: lagged population density, rainfall, soil quality, elevation, ethnicity, etc.
Econometric models

\[
\ln q(p_{it}, w_{it}) = \alpha_{1i} + \beta_1 \ln \hat{p}_{it} + \sum_{j=1}^{M} \gamma_{1j} \ln w_{jit} + \rho_1 \ln \varphi_{it} + Z_{it} \kappa_1 + V_{it} \nu_1 + \delta_1 \hat{u}_{it} + \tau_1 \hat{\delta}_{it}^2 + \varepsilon_{1it} \quad (1)
\]

\[
\ln x_j (p_{it}, w_{it}) = \alpha_{2ij} + \beta_{2j} \ln \hat{p}_{it} + \sum_{j=1}^{M} \gamma_{2j} \ln w_{jit} + \rho_2 \ln \varphi_{it} + Z_{it} \kappa_2 + V_{it} \nu_2 + \delta_2 \hat{u}_{it} + \tau_2 \hat{\delta}_{it} + \varepsilon_{2ijt} \quad (2)
\]

- **Dependent variables**
 - \(q \): value of gross and net outputs per unit of land; income per adult equivalent
 - \(x \): intensity of fertilizer use; intensity of cash inputs use
Data sources

- Household Survey Panel Data:
 - Nationwide Egerton University (Tegemeo Institute) rural household survey panel dataset

- National Population Census Data:

- Gridded Population Data:
 - High-resolution gridded estimates of rural population distributions -GRUMP (Global Rural-Urban Mapping Project)
 - Population density: persons/km² of arable land
 - Land quality – agricultural potential
Results: Smallholder intensification

<table>
<thead>
<tr>
<th></th>
<th>Fertilizer use kg/ha</th>
<th>Purchased inputs KSh/ha</th>
<th>Crop production kg/ha</th>
<th>Income KSh/ae</th>
<th>Off-farm income KSh/ae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct partial effects</td>
<td>0.129***</td>
<td>0.097***</td>
<td>0.135***</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indirect partial effects</td>
<td>-0.023***</td>
<td>-0.021***</td>
<td>-0.037***</td>
<td>-0.035***</td>
<td>0.014*</td>
</tr>
<tr>
<td>Total partial effects</td>
<td>0.107***</td>
<td>0.077***</td>
<td>0.098***</td>
<td>-0.035***</td>
<td>0.014*</td>
</tr>
<tr>
<td>Turning point</td>
<td>617</td>
<td>729</td>
<td>713</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Number of observations</td>
<td>5845</td>
<td>5845</td>
<td>5845</td>
<td>5845</td>
<td>5845</td>
</tr>
<tr>
<td>Number of households</td>
<td>1169</td>
<td>1169</td>
<td>1169</td>
<td>1169</td>
<td>1169</td>
</tr>
</tbody>
</table>
Results: Farm intensification thresholds

Figure 1: Fertilizer quantities applied per hectare cultivated

![Fertilizer quantities applied per hectare cultivated](image1)

Figure 2: Total value of cash expenditures per ha cultivated

![Total value of cash expenditures per ha cultivated](image2)

Figure 4: Net crop income per hectare cultivated

![Net crop income per hectare cultivated](image4)

Figure 5: Net crop income per family labor (resident adults)

![Net crop income per family labor (resident adults)](image5)
Results overview

• Literature has not considered what lies beyond the smallholder intensification
 • Intensification not possible beyond some population density thresholds
 • Soil fertility is declining in densely populated areas due to nutrient mining with continued cultivation and reduced fallows (Dreschel et al., 2001)
 • Literature show low crop response to inorganic fertilizer application due increased soil acidity as a result of inorganic fertilizer overuse (Marenya & Barrett, 2009)
Areas of further research

• Studying the linkages between rising population density, effects on farm behavior, e.g.
 • More continuous cultivation and reduced fallow
 • Impacts on soil fertility/carbon
 • Crop response to fertilizer application
 • Feasible options for sustainable intensification in light of these trends

• Teasing out these relationships at least in some countries
Policy suggestions

• Sustainable intensification in densely populated areas
 • Public investment in agricultural research focusing on new land-saving farm technologies and practices appropriate for small farms

• Rural-rural migration
 • Incentives for people owning more land than they need to release what they don’t need to land-poor groups
 • Physical infrastructure investment in less populated areas e.g. roads and irrigation

• Rural-urban migration
 • Off-farm employment opportunities in urban center
 • Invest in education to equip students necessary skills
Acknowledgements
THANK YOU

Milu Muyanga
muyangam@msu.edu,
http://www.afre.msu.edu/people/muyanga_milu
Assistant Professor, AFRE, Michigan State University
Senior Research Fellow, Tegemeo Institute, Egerton University
Food Security Group: http://fsg.afre.msu.edu/
Econometric models [2]

• **Explanatory variables**

 • Output price—expected maize prices (time-varying)
 - Predicted maize prices
 - Square of residual from the first stage regression of maize prices to capture expected maize prices variability

 • Input prices – wage rate, land rent, fertilizer prices (time varying)

 • Village level population density (time varying)
 - Population density variable
 - Residuals from the first stage population density regression
 - We also test for potential non-linear relationships

 • Household level variables
 - Demographic, distances to infrastructural facilities and services

 • Village level variables
 - Rainfall quantity and variability

 • Unobserved heterogeneity

 • Regional and survey year dummies