Agricultural Trade Flows among Developing Countries: Do Trade Agreements make a Difference?

Gelson Tembo and T.S. Jayne

Presented at the 27th International Conference of Agricultural Economists
Held at the Beijing International Convention Centre, Beijing, China
August 16-22, 2009

Plan of the presentation

- Introduction
 - Motivation
 - Objectives
- Analytical framework
- Specification and estimation
- Data and data sources
- Results
- Summary and conclusions
Introduction

- SADC presents great potential for trade
 - 14 members; 6 share borders with Zambia
 - > 200 million inhabitants
 - > US $180 billion total GDP
- BUT intra-regional trade below potential
 - Tariff and non-tariff barriers
 - NTBs: Licenses, permits, quotas, prohibitions, confinements, export subsidies
 - High production and marketing costs

Introduction (2)

- The SADC Trade Protocol
 - Enacted in 1996 but commenced in 2000
 - Provides a framework for reform
 - Liberalized intra-SADC trade
 - Phased removal of barriers
Motivation

- Anecdotes → barriers still exist!!
- A dearth of hard evidence
 - Determinants of intra-SADC agric trade
 - Impact of the SADC-TP
- Needed to foster integration, welfare

Two objectives

- Determinants of intra-SADC trade for a member state, Zambia
- Impact of SADC-TP on agric imports and exports
Analytical framework

- We use the Gravity model
 - Reduced form of structural trade models (Deardorff 1995)
 - Asserts that bilateral trade is
 - Directly correlated with incomes – size proxy
 - Inversely related to distance
 - Foreign investment policy
 - Geographical, political, trade policy/status

Specification and estimation

- Key issue 1: trading-pair heterogeneity
- The model → multiplicative
 \[
 \ln y_{ijt} = \beta_0 + c_{ij} + \delta'z + \sum_k^{K} \beta_k \ln x_k + \varepsilon_{ijt}
 \]
- Where \(c_{ij} = \) unobserved effects
 \[\mathbf{x} = \begin{bmatrix} x_k \end{bmatrix} \] vector of gravity variables
 plus governance index
 \[\mathbf{z} = \text{dummies, incl. common membership to RECs} \]
Specification and estimation (2)

- Key issue 2: RE versus FE
 - Standard Hausman test inappropriate:
 - Panel-level heteroskedasticity (LR test)
 - Panel autocorrelation (Wooldridge’s test)
 - Cross-sectional dependence (Pesaran’s test)
 - Panel-robust auxiliary regression approach (Cameron and Trivedi 2005)
 - FE
Specification and estimation (3)

- Estimation by cluster-corrected FE estimator
 - Correction necessary due to heteroskedasticity and serial correlation
- Impact of SADC-TP
 - $dsadctp = I(\text{Year} > 2000)$
 - Chow test \leftrightarrow structural change
 $$H_0: \beta[dsadctp]=0, \beta[\text{interactions}]=0$$

Specification and estimation (4)

- Selected interactions
 - COMESA
 - Before SADC-TP \gg $H_0: \beta[\text{dcomesa}]=0$
 - During SADC-TP
 $$H_0: \beta[\text{dcomesa}]=0, \beta[\text{dcomesa} \times dsadctp]=0$$
 - Political stability
 - Before SADC-TP \gg $H_0: \beta[\text{stability}_t]=0, \beta[\text{stability}_{t-1}]=0$
 - During SADC-TP
 $$H_0: \beta[\text{stability}_t]=0, \beta[\text{stability}_{t-1}]=0,$$
 $$\beta[dsadctp*\text{stability}_t]=0, \beta[dsadctp*\text{stability}_{t-1}]=0$$
Data and data sources

- 11 years of country-level panel data
 - 5 years before the SADC-TP (1996-2000)
 - 6 years post-SADC-TP (2001-2006)
- Assembled from various sources:
 - Zambian government departments
 - SADC reports & website
 - Other web sources: UN, WB, IMF, AGOA, etc

Data and data sources (2)

- Distances to Mauritius and Seychelles by a web-based algorithm (as-the-bird-flies)
- Political stability point estimates from the WB Governance & Anti-corruption website www.worldbank.org/wbi/governance
 - Level and first lag (collinear → joint)
 - Almon lag variables?
 - Equally collinear
 - Data limitations could not permit long lag lengths
Results

- Standard gravity variables largely consistent with expectations
 - Sizes of trading partners (GDP)
 - Positive BUT insignificant
 - Zambia’s FDI inflow
 - Positive and significant in all models

Part of the regression output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Export</th>
<th>Import</th>
<th>Export</th>
<th>Import</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-188.956+</td>
<td>-337.134</td>
<td>-173.548</td>
<td>-276.781</td>
</tr>
<tr>
<td></td>
<td>(117.889)</td>
<td>(194.482)</td>
<td>(116.773)</td>
<td>(204.548)</td>
</tr>
<tr>
<td>Log of partner GDP</td>
<td>7.965+</td>
<td>8.825</td>
<td>7.168</td>
<td>7.205</td>
</tr>
<tr>
<td></td>
<td>(4.946)</td>
<td>(9.292)</td>
<td>(4.916)</td>
<td>(8.843)</td>
</tr>
<tr>
<td>Log of partner per capita GDP</td>
<td>-9.139+</td>
<td>-8.102</td>
<td>-8.324</td>
<td>-7.346</td>
</tr>
<tr>
<td></td>
<td>(5.611)</td>
<td>(10.133)</td>
<td>(5.530)</td>
<td>(9.217)</td>
</tr>
<tr>
<td>Log Zambia GDP</td>
<td>1.642</td>
<td>6.961+</td>
<td>1.589</td>
<td>6.174</td>
</tr>
<tr>
<td></td>
<td>(1.229)</td>
<td>(4.256)</td>
<td>(1.417)</td>
<td>(4.947)</td>
</tr>
<tr>
<td>Log Zambia GDP per capita</td>
<td>-0.030</td>
<td>-0.101</td>
<td>-0.057</td>
<td>-0.246+</td>
</tr>
<tr>
<td></td>
<td>(0.157)</td>
<td>(0.150)</td>
<td>(0.162)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>Log of partner FDI</td>
<td>-0.070</td>
<td>-0.102</td>
<td>-0.094</td>
<td>-0.373</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.403)</td>
<td>(0.155)</td>
<td>(0.503)</td>
</tr>
<tr>
<td>Log of Zambia FDI</td>
<td>0.957**</td>
<td>1.208***</td>
<td>1.001**</td>
<td>1.178***</td>
</tr>
<tr>
<td></td>
<td>(0.359)</td>
<td>(0.286)</td>
<td>(0.334)</td>
<td>(0.303)</td>
</tr>
<tr>
<td>Comesa dummy, 1=member</td>
<td>-0.783*</td>
<td>-1.920</td>
<td>-0.725*</td>
<td>-2.845**</td>
</tr>
<tr>
<td></td>
<td>(0.363)</td>
<td>(1.904)</td>
<td>(0.321)</td>
<td>(1.224)</td>
</tr>
<tr>
<td>AGOA dummy, 1=eligible</td>
<td>0.368</td>
<td>0.046</td>
<td>0.356</td>
<td>0.241</td>
</tr>
<tr>
<td></td>
<td>(0.885)</td>
<td>(0.819)</td>
<td>(0.873)</td>
<td>(0.652)</td>
</tr>
<tr>
<td>F statistic</td>
<td>$7.1 \times 10^{***}$</td>
<td>5.163^{**}</td>
<td>19.97^{***}</td>
<td>19.44^{***}</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.651</td>
<td>0.497</td>
<td>0.664</td>
<td>0.548</td>
</tr>
</tbody>
</table>
Results (2)

- Trade agreements
 - SADC-TP
 - Imports \rightarrow Unambiguously positive & significant
 - 39% larger with RSA
 - Exports \rightarrow Only in the model that includes RSA
 - COMESA
 - Positive during SADC-TP,
 - Significant in import model without RSA

Joint tests

<table>
<thead>
<tr>
<th>Test description</th>
<th>All SADC partners</th>
<th>Excluding RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Export</td>
<td>Import</td>
</tr>
<tr>
<td>SADC-TP (Chow)</td>
<td>39.84*</td>
<td>163.86**</td>
</tr>
<tr>
<td>Political stability</td>
<td>0.69</td>
<td>1.11</td>
</tr>
<tr>
<td>COMESA</td>
<td>1.16</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Results (3)

- Political stability
 - Effects more defined in the SADC-TP period
 - Consistently positive in models without RSA
 - Significant at 5% in the import model

Summary and conclusions

- Zambia’s agricultural trade
 - Driven by
 - Economic sizes (GDP)
 - FDI
 - Supermarkets, NTEs
 - More responsive on the import side
 - Comparative disadvantages?
 - Supply responsiveness?
Summary and conclusions (2)

- RSA overshadows trade relationships with other countries
 - SADC-TP effects largest with respect to imports from RSA
 - COMESA effects visible during SADC-TP
 - But significant only without RSA
 - RSA not a member of COMESA

Summary and conclusions (3)

- Governance of member countries important
 - Effect more defined during SADC-TP
 - Less so when RSA is included
 - RSA is the largest trading partner
 - RSA has consistently larger governance indices

- Structural rigidities still an issue
 - Policy (export bans, import tariff effects)
 - Production and marketing costs
Thank you!!